Comments Off on Tech Firm to Add 600 Colorado Springs Jobs
Dallas-based Affiliated Computer Services, Inc. announced that it will be expanding its operation to Colorado Springs, adding 600 employees. The move will more than double its Colorado staff and is projected to make an estimated $100 million impact over five years.
Comments Off on The Million Dollar Programming Prize
Netflix offered a reward of $1,000,000 to the programmer who could improve their movie recommendation software. This is the story of the guys who won and how they did it: http://www.spectrum.ieee.org/may09/8788
Comments Off on Eric Schmidt, Google Chairman and Chief Executive Officer, speaks at UPenn’s 2009 Commencement Ceremony
During his May 18 University of Pennsylvania Commencement Address, Eric Schmidt, Google Chairman and Chief Executive Officer, stressed that downturns can lead to innovation and playfully compared his generation with his more tech-savvy audience.
Comments Off on Researchers Make New Electronics—With a Twist
They’ve made electronics that can bend. They’ve made electronics that can stretch. And now, they’ve reached the ultimate goal: electronics that can be subjected to any complex deformation, including twisting.
Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern University’s McCormick School of Engineering and Applied Science, and John Rogers, the Flory-Founder Chair Professor of Materials Science and Engineering at the University of Illinois at Urbana-Champaign, have improved their so-called “pop-up” technology to create circuits that can be twisted. Such electronics could be used in places where flat, unbending electronics would fail, like on the human body.
Electronic components historically have been flat and unbendable because silicon, the principal component of all electronics, is brittle and inflexible. Any significant bending or stretching renders an electronic device useless.
Huang and Rogers developed a method to fabricate stretchable electronics that increases the stretching range (as much as 140%) and allows the user to subject circuits to extreme twisting. This emerging technology promises new flexible sensors, transmitters, photovoltaic and microfluidic devices, and other applications for medical and athletic use.
The partnership—where Huang focuses on theory and Rogers focuses on experiments—has been fruitful for the past several years. Back in 2005, the pair developed a one-dimensional, stretchable form of single-crystal silicon that could be stretched in one direction without altering its electrical properties.
Next, the researchers developed a new kind of technology that allowed circuits to be placed on a curved surface. That technology used an array of circuit elements approximately 100 micrometers squared that were connected by metal “pop-up bridges.”
The circuit elements were so small that when placed on a curved surface, they didn’t bend, similar to how buildings don’t bend on the curved Earth. The system worked because these elements were connected by metal wires that popped up when bent or stretched.
In the research reported in Proceedings of the National Academy of Sciences (PNAS), Huang and Rogers took their pop-up bridges and made them into an “S” shape, which, in addition to bending and stretching, have enough give that they can be twisted as well. “For a lot of applications related to the human body—like placing a sensor on the body—an electronic device needs not only to bend and stretch but also to twist,” says Huang. “So we improved our pop-up technology to accommodate this. Now it can accommodate any deformation.
Comments Off on Beginning Scientists Receive Presidential Awards
Twenty young scientists from among those taking part in the National Science Foundation’s (NSF) Faculty Early Career Development Program (CAREER) recently received an additional distinction as winners of the Presidential Early Career Awards for Scientists and Engineers (PECASE) for the 2007 competition.
The PECASE program recognizes outstanding scientists and engineers who, early in their careers, show exceptional potential for leadership at the frontiers of knowledge. This Presidential Award is the highest honor bestowed by the U.S. government on scientists and engineers beginning their independent careers. In addition to the NSF’s winners, there are 48 scientists nominated by other government agencies.
By receiving awards through the CAREER program, the PECASE winners had already demonstrated their success in integrating research and education within the context of the mission of their organization.
“We take great pride in the PECASE winners,” says Kathie L. Olsen, NSF’s deputy director. “It is important to support the transformational research of these beginning scientists, and to foster their work in educational outreach and mentoring.”
Comments Off on UC San Diego Engineers Make Buildings Safer During Earthquakes
Recent simulated earthquake tests conducted by University of California, San Diego engineers are expected to lead to retrofit schemes that make historic buildings safer. The structural engineers tested a structure similar to those that were built in California in the 1920s that have masonry infilled walls and reinforced concrete frames. Based on data collected from tests performed on the world’s only outdoor shake table, the engineers will come up with new seismic assessment tools and critical retrofit designs for these kinds of structures, which were not designed according to current standards. As part of the project, the engineers subjected a Three-story structure with non-ductile reinforced concrete frames with unreinforced masonry infilled walls to shaking representative of a series of different seismic events.
Infill walls can generally improve the seismic safety of a building up to a certain level of earthquake intensity depending on the number of walls present and their locations. Once the earthquake force exceeds the strength of the walls, the failure of such structures could be sudden and catastrophic as demonstrated in the recent UC San Diego tests. Due to the frame-panel interaction, the earthquake load resisting mechanism of these structures is complicated, and it is difficult for engineers to assess their seismic resistance. The objectives of this project are to investigate the resistance of this type of structure under realistic seismic load conditions with large-scale tests and develop and calibrate reliable analytical models to assess their seismic performance.
“We will also look into retrofit methods to push the performance envelope of these structures. In reality, some of these structures may not have sufficient walls to resist earthquake loads or some walls may be missing in critical locations of a building. Hence, we need reliable means to assess and improve their performance,” says Benson Shing, a structural engineering professor at the UC San Diego Jacobs School of Engineering, and the lead researcher on the project.
Currently, there is a lack of reliable analysis methods to evaluate the seismic performance of these older structures and validated retrofit methods to improve their seismic behavior. In California, construction of unreinforced masonry buildings including those with brick infill walls came to a halt after the 1933 Long Beach earthquake, which was a 6.4 magnitude, but many of them still exist today. Although only moderate in terms of magnitude, this earthquake caused serious damage to unreinforced masonry structures on land fill from Los Angeles to Laguna Beach. Property damage was estimated at $40 million, and 115 people were killed.
The impact of this $1.24 million project, funded by the National Science Foundation, is vast since a large number of such structures can be found in the Pacific Northwest, and in the Midwestern and Eastern United States, where big earthquakes could occur even though the recurrence frequency is lower. This type of structural system is also very common in areas of high seismicity around the world, including China and the Mediterranean region.